
AD-A242 581

RL-TR-91-177
Final Technical Report
August 1991

INTERFACE DESIGN TOOLS
PROJECT

BBN Systems and Technologies

William J. Salter, Dan Cerys, Bruce Papazian,
R. Bruce Roberts

APPROVED FOR PUBLIC RELEA E,, DIBUTION UNLIMIT7ED

91-13835

Rome Laboratory
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-91-177 has been reviewed and is approved for publication.

APPROVED:

DOUGLAS A. WiHITE

Project Engineer

APPROVED: 40V P k -
RAYMOND P. URTZ, JR.
Technical Director
Command, Control & Communications Directorate

FOR THE COMMANDER:

RONALD R-APOSO
Plans & Programs Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
rnaili-g list, or if the addressee is no longer enployed by your organization, please
notify RL_(COES) Griffiss AFB NY 13441-5700. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE 0oMA Novea
Pink errq o tofl un d I r*G'Turrmn euntefr~dtoove a 1a I reg m*I g Ourt f tvm I' sawovr e r1g oa sc"es
gamorw ct artwwi " t n t rn w-c o rmaw " revow-g lcn x- " tfoo ria S" c roTrTWIs ut-r ouc nson'e or " m rw vsMoect "'-s
ccieac at rr~wvtr- a c*-.g gso fo r- mm o- m 'o' to Ws. orHsm - e r~s Sennoas Dreacrate for urmw Omet wicPoors 12-5jefe

Davs ,grw Sule i 204 k."! r, VA 2I =-4. " to "- Of Mwagw"w, I " BuopL Pwww Rgi.xA P,co (07" 4-01 9(Ias-rigv '. 0C 2,6M

1. AGE NCY USE ONLY (Leave Blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1991 Final Jan 89 to May 90

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

IYTERFACE DESIGN TOOLS PROJECT C - F30602- 8 7 -D-O0 9 3

PE - 63728F

6. AUHOR(S)
PR - 2532
TA - QA

William J. Salter, Dan Cerys, Bruce Papazian, - 06

R. Bruce Roberts

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8, PERFORMING ORGANIZATION
REPORT NUMBER

11B': Systems and Technologies

A Division of Bolt Beranek & Newnan, Inc. 7562
1', M'oulton Street
Ca-:brid-e !A 02138

9. SPONSORINGJMONFTORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Rome Laboratory (COES) AGENCY REPORT NUMBER

Griffiss AFB NY 13441-5700

RL-TR-91-177

11. SUPPLEMENTARY NOTES
Rome Laboratory (RL) - Formerly Rome Air Development Center (RADC)

RL Project Engineer: Douglas A. White/COES/(315) 330-3564

12a DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACTWh21M-7 0
5wcrds)

This report describes an effort to provide tools that assist in the design and
development of user interfaces. Human factors knowledge is used to provide an

intelligent capability which can be applied to generate interface alternatives
an! the underlying code for those alternatives. Two gaps evident in available
tools for dealing with windows were also addressed: clustering windows and

linking windows. "Clustering" deals with the grouping of multiple windows, and
the tools provided facilitate the specification of screen configurations. "Linking
tools"provide mechanisms to specify and enforce functional dependency between
windows so that when what is in one changes the other windows change in pre-

specified ways.

14. SUBJECT TERMS IS NUMBEA OF PAGES

Artificial Intelligence Windows Design 20

User Interface Intelligent Tools 16 PRCECODE

17. SECURITY CLASSIFICATION 118. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED I UNCLASSIFIED UNCLASSIFIED I Un

NSN 7540-C -29&55M Stwxmo F a 298 (Rev 2-07
pIrlooda cy ANSI Stc3 Z39-I

Table of Contents

1.0 Introduction ..

2.0 Approach and Rationale ..1

3.0 The Interface Design Tools Developed on this Project 4

4.0 Possible Next Steps .. 7

Accession For

DT I

y_

1.0 Introduction

This document is the Final Report of Task 3, sponsored by the Rome
Air Development Center under contract number F30602-87-D-0093.
The primary goal of this task was to develop and deliver Macintosh-
based software that could be used to assist in the design of user-
machine interfaces for C2 applications. The particular emphasis in
this software is on incorporating Human Factors knowledge and
guidelines. The software itself is discussed in some detail in BBN
Report Number 7480, "Interface Design Tools Project Software
User's Manual." In this document, we briefly lay out the development
of our approach to the software, and present the major lessons that
we have learned. We conclude with a summary of possible future
activities that could support the further development of tools for
user interface design and development.

The work on this task was done primarily by Dan Cerys, Bruce
Papazian, Bruce Roberts, and William Salter of BBN; we built on
work that also involved Richard Pew, Don Redick, Dan Tani, and
Roland Zito-Wolf of BBN, and Mark Friedell and Joe Marks of Harvard
University. We would like to thank our COTRs at RADC, Mike McHale
and later Doug White, for the support they have provided to this
activity. The statements and recommendations in this report are
those of the authors, and do not represent the expressed or implied
positions of the Rome Air Development Center, the Air Force, or the
United States Government.

2.0 Approach and Rationale

We began this work with the hope that the Human Factors literature
would be advanced and detailed enough to make it possible to

This material may be reproduced by or for the U.S. Government pursuant to
the copyright license under the clause at DFARS 252.227-7013 (May 1981)

essentially automate the process of developing user interfaces,
given a sufficient specification of user tasks. After extensive
review of the literature and of the software tools based on it
(presented in BBN Report Number 6932, "An Intelligent Tool for the
Design of Presentations: A System Identification Study," the Final
Report of Task 2 under the same RADC contract), we concluded that
this goal was unrealistic. Many of the most important issues for
user interface design were barely treated in the field, while much of
the work focussed on lower-level aspects of interface design. For
example, there was very little literature dealing with the various
types of information processing tasks that users perform, and how
interfaces can facilitate those tasks, while there was a
considerab!e amount about type sizes and layouts. Althougt
important, an understanding of these lower-level aspects of the
interface is not adequate for specifying interface design.

We conceptualize the interface design problem into seven steps:

1) construct as model of the user's tasks. We define
this in terms of information exchange primitives, which specify the
different ways in which a user and a system can interact.

2) allocate functions to the user or the system.
This is essentially the activity of scoping the application, focusing
on the roles of user and system; note that these two roles must be
considered and defined in tandem.

3) develop a user-system dialogue model. This
refines the allocation of functions into interactions and sequences
of interactions between user and system.

4) assign control and display primitives to
information input and output tasks. This begins the
specification of the interface per se; here, the abstract elements of

2

the dialogue are associated with specific interface components. The
set of such components are constrained by the relevant hardware and
software conventions; in this task, we focused on the Macintosh, and
thus menus, dialogue boxes, windows, and the like were important
components.

5) group primitives into presentations. This
associates components into screens.

6) determine interpresentation transition methods.

This addresses issues of how to move among presentations.

7) develop a functional interface prototype.

We drew several conclusions from our review that have helped to
guide our approach. First, the Human Factors literature
included recommendations about the design process itself,
as well as about facts and rules about the actual designs of
interfaces. We have used this literature, although (like most
extensive scientific literatures) it is by no means perfectly
consistent.

Second, and perhaps most important, since it serves to redefine the
fundamental nature of the interface design task: the design
process is better conceived of as the reconciliation of
conflicting constraints than as the application of clear-cut
rules.

Third, effective design requires collection and application of
knowledge of several distinct types: customer requirements,
domain knowledge, computer science, Human Factors,
underlying system, and user task. In particular, we determined
that a heavy emphasis must be placed on understanding user tasks
and conventions from the domain when selecting dialogue and

3

display mechanisms. And we found that incorporating sufficient
domain knowledge and conventions substantially reduces, and often
eliminates, the need for applying knowledge about fundamental
perceptual processes.

Our review of the state of the art of interface design tools showed
that the majority of system have been built with a relatively narrow
view of the interface design process. The coverage of the existing
tools is often narrower than implied by the way they are discussed
in the literature. In general, the majority of system focus on
speeding up the development process (a worthwhile goal, to be sure)
rather than on improving the resulting design. Typically, graphic
design principles predominate over encoded Human Factors
guidelines. This is, at least in part, because the human factors
literature is not generally expressed in a way that is amenable to
coding into rules, due to its situation-specific nature and the degree
of background knowledge and assumptions assumed. And, somewhat
surprisingly, we found that the use of constraint-based paradigms
was less prevalent here than in other design domains.

3.0 The Interface Design Tools Developed on this Project

Our overall objective was to improve the quality of C2
application interfaces by leveraging programmers' time.
This led to five specific aspects of our approach:

1) Provide embedded guidance on interface design;

2) Provide tools to facilitate interface design;

3) Use a set of mature interface primitives (the Macintosh

Toolbox);

4

4) Extend this set of primitives to support C2 applications

more fully;

5) Integrate these tools with the (Coral) Apple Allegro

lisp environment.

We particularized this approach to address six goals for the

interface design process itself:

1) Raise the level of the interface specification;

2) Enable the programmer to integrate domain, application

function, and user task knowledge in designing the interface;

3) Provide sound and useful interface guidance for varying

degrees of domain, application, and task knowledge;

4) Assist the programmer in identifying further
information needs that can help to guide the design;

5) Allow the programmer to override system

recommendations;

6) Enable the programmer to explore alternatives rapidly

and efficiently.

In terms of actual interface implementation, our approach had

several noteworthy features:

1) Support the assignment of interface primitives to user-

computer I/0 tasks;

2) Support the aggregation of interface primitives into
presentations;

5

3) Extend the Toolbox to support the linking of windows;

4) Provide map manipulation capabilities (since these

seemed to be of such importance in the particular C2 domains of
relevance); and

5) Provide interface code-generation capabilities, such

that the programmer could go directly from the specification to
actual running interface code.

We developed an integrated suite of tools, and supported three
linked, but distinct, views of interface development: the user's
view of the interface, which provides the actual look and feel on the
resulting interface; the programmer's view of coding the
interface, which consists of a rich lisp programming environment,

closely coupled with Allegro Commonlisp; and the interface

designer's view, which is presented in terms of specifications,
structures, and guidance on designing interfaces. The user's view
gives the programmer access to the actual look and feel of the

resulting interfaces, and also makes it possible to access the

underlying lisp code for various parts of the interface; in addition, it
provides access to the functional specifications contained in the
interface design view, making it possible to explore the
relationships of concrete aspects of the interface with the reasons

for them.

The programmer's view gives direct access to the lisp code that
implements the design; it is fully integrated with the Allegro

Commonlisp environment, including the Dialogue Designer. And it
also provides access to the design constraints that have shaped the
specific design. The interface designer's view mediates between the
user's view and the programmer's view. It provides an efficient
means to discriminate among design alternatives using functional

6

information. It also supports using partial specifications to yield a
subset of design alternatives and associated requirements for
specifying additional information to select among the alternatives.
It generates explanations as information is supplied and

alternatives are eliminated. And it permits the programmer to
override the system's recommendations.

4.0 Possible Next Steps

We believe that the tools we have developed can facilitate the
interface design process, particularly for Macintosh applications (as

defined in the RADC SOW) in the C2 domain. However, we also have
identified five areas in which we think further advances can be
made, advances that are both technically feasible and cost-justified
in terms of incremental efficiency of the interface design process.
We briefly discuss these areas in this section.

First, there should be additional design support for the
presentation of groups. By "groups" we mean sets of alternatives
or choices where the set size is greater than one (such as
topographical features to be displayed on a map). Specification of
groups pervades applications, and a number of design approaches are

supported within the Macintosh style guidelines and by the Toolbox.
We can build on the structure-function mapping paradigm we used

for the work described above, and would focus on specifying the
detailed semantics of the user-machine interaction, the particular
selection characteristics of the task, and the physical constraints
(and resources) of the display monitor. We note that a variety of

dialog box types, window types, and palettes supported by the

Toolbox must be addressed.

Second, expanded on-line design advice could be useful. Such

advice could build on models of human performance and interface
usability. The advice could address two linked problems: alternative

7

design comparisons for underspecified alternatives, and the use of a
priori constraints to narrow the design space. Metrics exist for
number of required mouse clicks, display complexity, and
choice time. Such metrics can be integrated into the set of design
tools and could be used to help in the evaluation, or initial selection,
of interface design alternatives.

Third, we believe that substantial advances can be made in the
interpretation and utility of prototype interface usage
data. A number of approaches to interface design have
"instrumented" prototypes, recording the time and location of each
mouse click. In general, such approaches result in masses of data
that are quite time-consuming to analyze and generally do not
justify the effort and costs of using them. We recommend an
approach centered on the time history of the use of selection
mechanisms. The basic idea is to find the access paths taken to get
to various functions within the application, and to optimize access
time across functions, taking account of frequency and sequences of
use. We are convinced that this basic approach can be quite useful.
In particular, it can help in identifying: functional choices that are
hard to find, choices that are buried too deeply, ambiguous menu
terminology, and selection or access mechanisms that can be
grouped functionally.

We also believe that enhancements can be made in tools for
redesigning prototypes, based on usage. Access to interfaces
within prototypes can be enhanced using both the Apple Interface
Designer and our own suite of tools. Links should be developed
between the sort of time history discussed above and design views
of the prototype, so that the implications of the usage data can be
quickly and directly incorporated into the developing design. And
tools could be extended to support an efficient iterative process ot
design, prediction of use, testing, and redesign.

8

Finally, we also believe that further treatment can be given to
layout and aesthetic considerations. Such considerations can
be applied after the functional specifications and design have
occurred. They would provide more detailed advice on Macintosh
layout conventions and graphic design considerations, and would give
the designer more flexible control of the layout of choice selection
mechanisms.

In closing, we note that the increasing power and scope of
computers enhances the need for clarity and consistency in the
design of interfaces. The proliferation of useful applications can,
paradoxically, make it harder for a user to find required
functionalities, since differences across applications in conventions
of usage, commands, and the like can make it more difficult to use a
new application, or to move among applications. Guidelines and
tools for application and interface design are more needed -- and
more possible -- now than ever before. We believe that such
guidelines and tools will make it easier for application builders to
deliver utility to users, rather than constraining them in their
choices, and we plan to be a part of this critical developing area for
some time to come.

9

MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in suppcrt of Air

Force Command, Control, Communications and Intelligence (C 3I) activities
for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C 31 systems. In addition,
Rome Labc-atorys technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

